Press "Enter" to skip to content

Every Psychologist Should Learn Programming

The aim of this post is to show you why you, as a psychology student or researcher (or any other kind researcher or student) should learn to program. The post is structured as follows. First I start with discussing why you should learn programming and then give some examples when programming skills are useful. I continue to suggest two programming languages that I think all Psychology students and researchers should learn.

Why should Psychologists learn programming?

Everyone should learn computer programming. It should be taught to our kids, in our school. There are so many benefits of programming and I will, therefore, only write about the ones that I find most important. Writing code (i.e., programming) can be seen as applied mathematics and sciences. Some programming languages make you think algorithmically. It teaches you an iterative approach to solving problems and testing out your ideas. Most of the time it is challenging, fun, and, on top of this, it can make your life easier!

For instance, using simple scripts you can automate things such as extracting information from your PDFs. This information may be used to rename the PDFs and, if you’d like, organize them in folders. Apart from making your everyday life easier (e.g., automate everyday tasks) of course more reasons for learning programming. This post is going to focus on some of these reasons with an emphasis on when psychologists have use of coding skills.

I am a Ph.D. student with a focus on Cognitive Psychology (BSc. and MSc in Cognitive Science). Naturally, my views on programming for researchers and students are coloured by my discipline. However, I think that everyone should know programming. Many researchers and Ph.D. students that I know are conducting experiments (e.g., in Psychology and Neuroscience) do some programming. Some do easier stuff such as using SPSS syntax and Mplus. Others use more advanced coding in Matlab, E-prime, Python, or C.

If you are planning on graduate studies (i.e., aiming for a Masters or a Ph.D.) in Psychology, or another of the cognitive sciences, programming is almost essential. I learned this when doing my Masters thesis. There was no time for my supervisor to create an experiment in E-prime for me. After my Masters, I started to look for Ph.D. positions and many of the ads required knowledge in Matlab, Python, or R.

When is programming skills useful?

Data collection

Many Psychology researchers, and students doing projects and their thesis’, use some software for collecting data. Although, there are many graphical interfaces (i.e., E-prime & Experiment task Programmed in PythonPresentation) you will most likely need to use some scripting language to solve some issues. For instance, the graphical interfaces will probably not be able to do pseudo-randomization. I would say studying cognition or perception on graduate level will require you to have some scripting or coding skills.

There is also an emerging interest in doing psychological research on social media (e.g., how different personality types expresses in Facebook behaviour). The flexibility of programming languages may also open doors to research projects that cannot be reached with common statistical software (e.g., Stata & SAS). Data can be spread across thousands of text documents or available around the web (e.g., social media).

Data analysis

There is lots of software available for data analysis: spreadsheets like Excel, batch-oriented procedure-based systems like SAS; point-and-click GUI-based systems like SPSS, Stata, and Statistica. Choosing an open source programming language is typically free of charge (e.g., R or Python) and offers greater flexibility.  Using a programming language, you do data analysis by writing functions and scripts.

Although, the learning curve may be steeper it is a very natural and expressive method for conducting data analysis. There are several positive aspects of writing scripts; it documents all your work, and you can automate sequences of tasks. That is, you can easily follow what you did last year (i.e., it is in your script) and  save time if you are running similar analysis on many experiments.

Another very important aspect of doing analysis in an open source and free programming language is that it makes reproducibility easier. Your script documents every step of your process and anyone can download and install the software needed to run your analysis. I would say that if you are a proponent of Open Science you should learn a programming language for doing your analysis.

Here’s some example blog posts on data analysis using Python:

What language should I learn?


When people discuss beginner programming languages and which languages that are easier and quicker to learn, Python inevitably comes up. It was created by Guido van Rossum, but is administrated by the non-profit organisation Python Software Foundation. The language is open source and free, even for commercial applications. Python is usually used and referred to as a scripting language. It is a high-level and general-purpose programming language.  Thanks to its flexibility, Python is one of the most popular programming languages (e.g., number 3 on the TIOBE Index for August 2019). It got full support for both object-oriented programming and structured programming.Python is a good language to learn programming

Why should I learn Python?

Why Python? First, it is open source and free. My personal experience with Matlab is that The Python is just far better that Matlab’s weird language. Furthermore, it integrates better with other languages (e.g. C/C++). Most importantly, however, is that there is a variety of both general-purpose and specialized python libraries. This means you can do data collection (e.g., scrape the Web or software psychological experiments) using Python. You can also analyse the your data using both common and more advanced statistical methods. Note that it may be more complicated to install Python. However, there are scientifically focused distributions that has a lot of the libraries that you will want to use. Personally, I have only used Anaconda and Python(x, y) but there is also Canopy.

A few Useful Python Libraries for Psychologists

There are of course so many useful Python libraries so that it would need, at least, a separate post to list them all. However, here are a few I have found useful.

Python for Data Collection:
  • OpenSesame is easy to install package and works on Linux, OS-X, Windows, and Android (both tablets, phones, and computers). The application offers a graphical user interface (GUI) for creating experiments. Requires minimal coding but let you write in-line scripts. See OpenSesame Tutorial: Using Image Stimuli for an example.
  • PsychoPy is also simple to install and cross-platform (Linux, OS-X, and Windows).  It promises precision timing, and it has a lot of different types of stimuli ready to use. PsychoPy offers both an Application Programming Interface (API) and a graphical interface for drag-and-drop creation of experiment. You can, of course, combine both.
Python for Data Analysis:
  • Pandas is an open source library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
    Make sure to check out my Python Pandas dataframe tutorial!
  • Statsmodels is a module that allows users to explore data, estimate statistical models, and perform statistical tests.  Some of the features of Statsmodels are; linear regression, generalized linear models, functions for plotting, tools for outputting results in tables in formats such as Text, LaTex, and HTML. See the post on how to carry out Repeated Measures ANOVA using Statsmodels for an example on how to use Statsmodels.
    Note that if you install Anaconda, Canopy, or Python(x, y) you will get Pandas and Statsmodels and many more useful libraries. Python(x, y) also includes Spyder IDE.
    Analysing Psychological data using PythonIf you are interested in Bayesian statistics:
  • PyStan enables you write Python code and send it to Stan.  Stan is a package for Bayesian statistics using the No-U-Turn sampler.
  • PyMC is a module that implements Bayesian statistical models and fitting algorithms. It includes Markov chain Monte Carlo. PyMC includes methods for summarizing output, plotting, goodness-of-fit and convergence diagnostics.

Make sure to check out the guest post, Probabilistic Programming in Python (Bayesian Data Analysis), for examples using PyMC3.

Python for Data Visualization:

R Statistical Environment

What is R? R is a free and open source programming language. It is a complete, interactive, object-oriented language with a focus on data analysis. In R statistical environment you can carry out a variety of statistical and graphical techniques. For instance, linear and non-linear modeling, classical statistical tests, time-series analysis, classification, and many more can be carried using both frequentist and Bayesian paradigms. Many new and exiting methods are developed in R meaning that if you learn R you have the possibility to use pioneering techniques. There are to many good resources and packages. You can find some resources on learning R in my post: R resources for Psychologists. Doing bayesian confirmatory factor analysis using blaavan package in R

Which language should I learn (Python vs. R)?

Python and R are, both, some the most popular languages for data analysis. As previously mentioned, while Python is a general-purpose language with an easy-to-understand syntax, R’s functionality is developed with statisticians in mind (“language for statisticians by statisticians”). If your primarily interest is doing data analysis R is probably the language to begin with.  Python, on the other side, enables you to create experiments and may be good to start with if you need to program your experiments. The amount of data science libraries for Python is increasing so in the future maybe it will be the one for statistics also. Whichever you choose, I suggest that you learn one at a time.

Note, if you learn both languages you can actually run R in Python. This will enable you to use the rich statistical packages from R within the elegant language of Python. Very handy!

How can you learn to program?

There are a huge number of resources out there to help. I came in contact with programming in school, when I was 17, in an elective course on web programming. I later took some courses in C++ but it was not until I found Python I started to like programming. As a student at the Bachelor’s programme in Cognitive Science I had to take 15 ECTs in Python programming.  Focusing on the free programming language (e.g., Python and R) there are so many resources available freely online to learn programming. For instance, you can find both Python and R  massive open online courses (MOOCs) at Coursera, and beginner courses at Code Academy for Python, Javascript Ruby, among other languages. Another promising free and interactive course is Codeschool Try R. Google has Python and C++ courses: Google For Education.  For a more statistics focused Python course you can look at CogMaster Statistics course: Python materials and Scipy Lecture Notes (at least one chapter).  Another really interesting way to learn R is Swirl. Swirl is an R-package that enables you to install interactive Swirl courses.

You can find some more good resources and books for learning R in my posts R resources for Psychologists and R books for Psychologists.

Reproducible Computational Environment

Now, if you decided how to learn how to program, either in Python or R, or maybe both, you may want to know about some cool tools to be create fully reproducible code. That is, if you want to make it easier for other researchers to reproduce your experiments (e.g., coded in PsychoPy), and your figures and data analysis (e.g., coded in R statistical environemnt) we can use Code Ocean or Binder. These two tools create a Docker image of your computational environment exactly like the one you used when coding. If you want to learn how to user Binder see the following two tutorials:


Learning programming is, of course, not easy. There are really good resources available, and with the right motivation you can learn how to program. If you are early in your career (Master, Ph.D., or Post-doc) the time you spend now on learning programming now will be rewarding in many ways. It is both challenging and fun, and may change your way of thinking. It will also make your research easier to reproduce.  Join the Open Science movement and upload your scripts on, for instance, GitHub or Bitbucket. This will enable other researchers to run your exact analysis. What do you think? Programming is essential or nothing for a Psychologist?


  1. Wow, i feel i was lucky that i can learn that on my bachelor.
    But i still don’t have great motivation to do programming.
    I think i need a community so that i can deeply learn phyton or any other languange.

    Nice post 🙂

    • Yes. Programming is essential, I think. Maybe a community would be great for learning Python (or any programming) so that one could ask questions, get ideas, and involve in projects.
      In the autumn there is a Python book for experimental psychologists and, surrounding, the Python applications Psychopy and OpenSesame there is a community. Maybe one could start a Python group with focus on Psychology/Cognitive science. May do that someday. Glad you liked my post.

  2. suhaib suhaib

    I am bit confused about learning programming, because it,s very difficult for me. After reading your post, i get clear, now i should start learning programming. I hope that one could start a python group with focus on cognitive science.

  3. galory galory

    Nice blog. It really simplifies our life although it may have a steeper learning curve. However,everything can learn it as long as you insist practicing and learning to solve problems by searching. Thanks.

    • Thanks for your kind words, Galory,

      I agree, most of us can learn programming.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: