R Resources for Psychologists

Good resources for learning R as a Psychologist are hard to find. By that, I mean that there are so many great sites and blogs to learn R. Thus, it may be hard to find learning resources that target Psychology researchers.

Table of Contents


The structure of this post is as follows. First, we start by getting a quick answer to the question “what is R?”. After this, we will briefly discuss good books you can use to learn R. In the next section, we will go into two other types of R resources: namely, tutorials and how-tos. This section will start by giving you some general resources and then list some R tutorials (many from this blog), and then, finally, you will get some Psychology specific R resources to learn from.

What is R?

If you are new to R, you might wonder what R is. R is a free and open-source programming language and environment. Data analysis in R is carried out by writing scripts and functions. Finally, R is a complete, interactive, and object-oriented language.

  • Save

R Books for Psychologists

Recently I wrote about four good R books targeted at Psychology students and researchers (i.e., R books for Psychologists). There are, however, of course, other good resources for Psychological researchers to learn R programming.

Therefore, this post will list some of the best blogs and sites to learn R.  The post will be divided into two categories; general and Psychology focused R sites and blogs. For those who are not familiar with R, I will start with a brief introduction on what R is (if you know R already; click here to skip to the links).

  • Save

In the R statistical environment, you are able to carry out a variety of statistical and graphical techniques. For instance, linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, and many more can be carried using both frequentist and Bayesian paradigms.

If you are new to R, you may want to start with R commander. This will provide you with a menu, making learning R a bit easier at the beginning. R can be downloaded here: The Comprehensive R Archive Network.

R Resources

One of the main things that I like with R is the broad and helpful community. This also means that there are many good resources for learning the language.

General R Resources

When starting off learning R any source may be useful. Here are some of the best R learning resources I’ve used:

  • Quick-R: A comprehensive source for information on how to carry out many common statistical analyses as well as descriptive statistics and graphs.
  • SimpleR notes for introducing the use of R for an introductory statistics course.
  • The R Guide
  • Cookbook for R provides solutions to many tasks and problems in data analysis.
  • Revolution Analytics – A blog for news and information about R. Publishes guides and articles about R.
  • R-bloggers A “blog aggregator” for R blogs. Here you can find and follow, a lot of comprehensive, basic and advanced, guides and posts.
  • RStudio – my Integrated Development Environment (IDE) of choice when it comes to R.

R Tutorials:

Here are some of my own R tutorials that you may find useful. They cover everything from the basics (e.g., removing variables, descriptive statistics, data visualization) to more advanced topics (e.g., using other software and services for reproducible code).

Checking Assumptions

IHere are some guides on how to check the assumptions of commonly used parametric tests:

If you are planning on carrying out regression analysis and you want to include categorical variables in your model you can check out the post about how to create dummy variables in R. This post will show you how to pre-process data so that you already have your indicator variabels when setting up your model.

R Functions

In this section, you will find links to my blog posts about some of the base R functions that you may find useful for e.g., data manipulation, data cleaning, simulation, exploration, and so on. First, if you need to learn about how to use the repeat() function in R to do some basic repeated calculations, or, how to simulate data using R’s simulate() function, check the post out.

Extracting time, day, and year from date in R

If you are working with time series data you might sometimes need to separate the different pieces of a date (e.g., year) to carry out your data analysis (e.g., time series). Here are some tutorials showing you how to split a date into different parts:

Psychology R Resources

If you are a psychology researcher aiming to learn R it can be helpful to learn from other psychologists more experienced with the R statistical language.  There are also some r-packages that are developed for psychology researchers.

  • Using R for Psychological Research – here you will find many tutorials for using R in psychological research.  These are very pedagogical and helpful. Here you also find the homepage of the great r-package psych.
  • Save
  • Notes on the use of R for psychology experiments and questionnaires
  • Learning Statistics with R free draft of a book for learning R. It mainly covers frequentist methods but has a chapter of Bayesian statistics.
  • Psychometric Models and Methods a brief overview of packages that are closely related to psychometrics. Used to teach statistics to Psychology students.
  • Mixed Psychophysics – aims to give statistical tools (i.e., R code, models, tutorials, and links to articles) for psychophysics. It contains a short tutorial covering Psychometric functions, generalized mixed models (GLMM).
  • The Psycho Blog. Here you will find some great blog posts and a very useful R-package called Psycho.R! It will make doing some of the most common statistical methods in Psychology easy to carry out using R.

If you are interested in learning how to reverse scores using R see the blog post “Reverse Scoring Using R Statistical Environment“.


Although, the learning curve for software such as R is steeper than using software with graphical interfaces (i.e., SPSS, Stata, and Statistica) it is not super hard to learn to carry out the most basic and classical statistical tests. If you aim for reproducibility learning R and/or LaTeX or RMarkdown is really the way to go. Hope you found some of the R resources useful. If you have any other resources that you think should be added (especially when it comes to Psychology related) please drop a comment below or use the contact page.

Note, Python is another great, and more general, programming language that may prove useful for an experimental psychologist (e.g., programming experiments). See my newer posts on how to carry out data visualization, data analysis, data manipulation, and more using Python:

  • Save

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll to Top
Share via
Copy link
Powered by Social Snap